Xenophilia (True Strange Stuff)

The blog of Xeno, a slightly mad scientist

Researchers decoding brain’s visual data compression mechanisms

…Researchers have hitherto assumed that information supplied by the sense of sight was transmitted almost in its entirety from its entry point to higher brain areas, across which visual sensation is generated. “It was therefore a surprise to discover that the data volumes are considerably reduced as early as in the primary visual cortex, the bottleneck leading to the cerebrum,” says PD Dr Dirk Jancke from the Institute for Neural Computation at the Ruhr-Universität. “We intuitively assume that our visual system generates a continuous stream of images, just like a video camera. However, we have now demonstrated that the visual cortex suppresses redundant information and saves energy by frequently forwarding image differences.”

Plus or minus: the brain’s two coding strategies

The researchers recorded the neurons’ responses to natural image sequences, for example vegetation landscapes or buildings. They created two versions of the images: a complete one and one in which they had systematically removed certain elements, specifically vertical or horizontal contours. If the time elapsing between the individual images was short, i.e. 30 milliseconds, the neurons represented complete image information. That changed when the time elapsing in the sequences was longer than 100 milliseconds. Now, the neurons represented only those elements that were new or missing, namely image differences. “When we analyse a scene, the eyes perform very fast miniature movements in order to register the fine details,” explains Nora Nortmann, postgraduate student at the Institute of Cognitive Science at the University of Osnabrück and the RUB work group Optical Imaging. The information regarding those details are forwarded completely and immediately by the primary visual cortex. “If, on the other hand, the time elapsing between the gaze changes is longer, the cortex codes only those aspects in the images that have changed,” continues Nora Nortmann. Thus, certain image sections stand out and interesting spots are easier to detect, as the researchers speculate.

“Our brain is permanently looking into the future”

This study illustrates how activities of visual neurons are influenced by past events. “The neurons build up a short-term memory that incorporates constant input,” explains Dirk Jancke. However, if something changes abruptly in the perceived image, the brain generates a kind of error message on the basis of the past images. Those signals do not reflect the current input, but the way the current input deviates from the expectations. Researchers have hitherto postulated that this so-called predictive coding only takes place in higher brain areas. “We demonstrated that the principle applies for earlier phases of cortical processing, too,” concludes Jancke. “Our brain is permanently looking into the future and comparing current input with the expectations that arose based on past situations.” …

via The brain’s data compression mechanisms.

We are change detection engines. That’s why we hallucinate if the visual scene is the same for too long (such as looking at the back of our eyelids during sleep, or the Ganzfeld effect.)

The ganzfeld effect (from German for “complete field”) or perceptual deprivation, is a phenomenon of perception caused by exposure to an unstructured, uniform stimulation field.[1]

It has been most studied with vision by staring at an undifferentiated and uniform field of colour. The visual effect is described as the loss of vision as the brain cuts off the unchanging signal from the eyes. The result is “seeing black”[2] – apparent blindness. It can also elicit hallucinatory percepts in many people, in addition to an altered state of consciousness.

Ganzfeld induction in multiple senses is called multi-modal ganzfeld. This is usually done by wearing ganzfeld goggles in addition to headphones with a uniform stimulus. …

http://en.wikipedia.org/wiki/Ganzfeld_effect

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Information

This entry was posted on December 18, 2013 by in Biology, Technology.
%d bloggers like this: